Python for Data Science

Cursos

 |

Python for Data Science

Introducción

El objetivo de este curso es aprender los fundamentos de la ciencia de datos y desarrollar una competencia efectiva orientada a resolver problemas reales usando Python como lenguaje. Se busca estructurar correctamente el conocimiento sobre algoritmos y técnicas asociadas para ofrecer soluciones empresariales automatizadas basadas en los datos.

Objetivos

Al finalizar el curso, el alumnado tendrá las nociones básicas de los siguientes conceptos, a la vez que sabrá utilizar el lenguaje Python para resolver casos reales asociados a ellos:

  • ¿Qué es (y qué no es) exactamente la ciencia de datos?
  • Las diferencias y usos principales del aprendizaje supervisado y no supervisado
  • Como orientar correctamente un proyecto de datos
  • Los principales algoritmos de clasificación y regresión
  • Los principales algoritmos de agrupación (clustering) y recomendadores
  • Cómo mejorar y optimizar modelos de Machine Learning
  • El uso de la simulación en la ciencia de datos

 

Perfil de los alumnos

Todo tipo de profesionales que deseen aprender cómo implementar soluciones de negocio basadas en la ciencia de datos, y planeen usar el lenguaje de programación Python.

Requisitos previos

Se recomienda que el alumnado tiene un dominio a nivel básico de Python, o un buen nivel en otro lenguaje de programación como Java, R, C++…

Documentación

Cada alumno recibirá un ejemplar de la Documentación elaborada por Netmind.

 

Metodología

Curso presencial, participativo y práctico. El docente introducirá los contenidos mediante problemas realistas, los participantes asimilarán los conocimientos mediante resolución de actividades de nivel adaptativo.

Certificaciones

Evaluación continua en base a las actividades realizadas en grupo y/o individualmente. El formador proporcionará feedback de forma continuada e individualmente a cada participante.

En el curso se realizará una prueba de evaluación tipo test que deberá superarse en un 70%. Se dispondrá de 30 minutos para su realización.

Las condiciones de los servicios adicionales de Certificación están sujetos a los términos del propietario de la licencia o de la entidad certificadora autorizada.

Acreditación

Se emitirá Certificado de Asistencia al curso JDB 206 sólo a los alumnos con una asistencia superior al 75% y Diploma aprovechamiento si superan también la prueba de evaluación.

 

Contenidos del Python for Data Science

1. Introducción a la ciencia de datos

  • Diferencias entre Data Science, Business Intelligence y Big Data
  • Aprendizaje supervisado vs Aprendizaje no supervisado
  • Tipos de datos en Python y sus particularidades
  • Introducción al Scikitlearn
  • Preprocesamiento de datos
  • Ingeniería de variables

2. Principales algoritmos de Regresión

  • Regresión lineal y evaluación de modelos numéricos
  • Árboles de regresión
  • Random Forests
  • Redes neuronales
  • Validación interna, externa y cruzada

3. Principales algoritmos de Clasificación

  • Regresión logística y evaluación de modelos basados en categorías
  • Árboles de clasificación
  • KNN
  • Support Vector Machine
  • Selección de parámetros automática

4. Otras técnicas de ciencia de datos

  • Reducción de la dimensionalidad (PCA)
  • Clustering (K-means, Jerárquico, Espectral)
  • Recomendadores
  • Introducción a la simulación

 

 

JDB206

Clases a Medida

Clases públicas

Actualmente, no hay planificada ninguna sesión. Por favor, haznos saber si te interesaría que abriéramos una nueva convocatoria para este curso.

Ver Calendario de Cursos

Detalles del curso

Referencia

JDB 206

Duración

16 horas

Modo de entrega

Virtual, Face-to-Face

Cursos Relacionados

Nuestros últimos Insights

Únete a nuestra comunidad

#AlwaysLearning

Formación

  • Sensibilización en la importancia de las e-Competences
  • Capacitación Técnica y en Gestión de la Tecnología
  • Formación a medida
  • Adaptación de contenidos propios a formación presencial y online
Buscar

Solicitar Información

Request Information